Polarized distribution of Na,K-ATPase in honeybee photoreceptors is maintained by interaction with glial cells.
نویسندگان
چکیده
Arthropod photoreceptors are polarized cells displaying distinct surface domains. The distribution of the Na,K-ATPase (sodium pump) over these domains was examined in the honeybee photoreceptor using a monoclonal antibody that specifically recognizes the sodium pump alpha-subunit (approximately 100 kDa). We find that the sodium pump is restricted to sites of the nonreceptive photoreceptor surface closely juxtaposed to glial cells; no sodium pumps were detected on the glia-free domains of the nonreceptive surface and on the light-sensitive microvillar membranes. In order to determine the role of photoreceptor-glia contact in maintaining this polarized pump distribution, we assayed the distribution of the Na,K-ATPase after experimentally influencing photoreceptor-glia contact. Sodium pumps were present on the entire nonreceptive photoreceptor surface when photoreceptor-glia contact was removed by isolating the photoreceptors. Remodeling photoreceptor-glia contact by incubation in hyperosmotic saline caused a redistribution of sodium pumps on the photoreceptor surface corresponding to the redistribution of glial cells. We show, further, that both photoreceptor-glia contact and Na,K-ATPase distribution are independent of extracellular Ca2+. No junctional structures were observed at the borders between Na,K-ATPase-positive and Na,K-ATPase-negative membrane domains. Together, these results suggest that adhesion of glial cells to the photoreceptors plays a crucial role in the maintenance of the polarized distribution of Na,K-ATPase in the honeybee photoreceptors. The Ca(2+)-independent adhesion of glial cells to the photoreceptor surface may trap the pump molecules at the sites of photoreceptor-glia contact.
منابع مشابه
O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملبررسی سلولی تومور و مکانیابی آنزیم Na+, K+-ATPase در موش توموری شده (Balb/c nu) با استفاده از رده سلولی 4T1
Background and purpose: The 4T1 cell line is a laboratory model used in the study of tumors biology. This cell line is very tumorigenic with high metastatic capacity in different organs. In this study, histology and immunohistochemistry methods were used to investigate the structure and localization of Na+/K+- ATPase enzyme in 4T1 cells induced breast cancer tumor in Balb/c nu mice. Material...
متن کاملDissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia.
The polarized distribution of Na-K-ATPase at the basolateral membranes of renal tubule epithelial cells is maintained via a tethering interaction with the underlying spectrin-ankyrin cytoskeleton. In this study, we have explored the mechanism underlying the loss of Na-K-ATPase polarity after ischemic injury in Madin-Darby canine kidney (MDCK) cells, utilizing a novel antibody raised against a r...
متن کاملDissociation of the Spectrin-Ankyrin Complex as a Basis for the Loss of Na,K- ATPase Polarity Following Ischemic Injury in MDCK Cells
The polarized distribution of Na,K-ATPase at the basolateral membranes of renal tubule epithelial cells is maintained via a tethering interaction with the underlying spectrinankyrin cytoskeleton. In this study, we have explored the mechanism underlying the loss of Na,K-ATPase polarity following ischemic injury in MDCK cells, utilizing a novel antibody raised against a recently-described kidney-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 105 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1993